Раздел 2. ООП СОО, утвержденный приказом по МОУ «СОШ №4 г.Ртищево Саратовской области» от 02.07.2018 года № 431-о, с изменениями, утвержденными приказом по МОУ «СОШ №4 г.Ртищево Саратовской области» от 29 августа 2019 года № 451-о. Директор МОУ «СОШ №4 г.Ртищево Саратовской области»

А.А.Тимофесв

Рабочая программа учебного предмета «Математика» для 10-11 классов.

Пояснительная записка

Рабочая программа учебного предмета «Математика» для 10-11-х классов соответствует Федеральному государственному образовательному стандарту основного общего образования, утвержденному приказом Минобрнауки России от 17.05.2012 № 413;

Программа разработана на основе следующих документов:

- авторская программа по математике под редакцией С.М. Никольский (М.: Издательство «Просвещение», 2016г.), Атанасян А.Г., Бутузов и др. (М.: Издательство «Просвещение», 2016г.)
- основная образовательная программа среднего общего образования (утверждена на заседании педагогического совета МОУ «СОШ №4 г.Ртищево Саратовской области», приказ от 28.06.2018 года №360-о).

Рабочая программа обеспечена учебниками, учебными пособиями, включенными в федеральный перечень учебников, рекомендованных Минобрнауки России к использованию в образовательном процессе в общеобразовательных учреждениях:

- С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др. «Алгебра и начала математического анализа», 10 класс (базовый и углубленный уровни), Просвещение, 2018 г.
- С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин «Алгебра и начала математического анализа», 11 класс, Просвещение; 2014г.;
- А.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. «Геометрия», 10-11 класс (базовый и углубленный уровни), Просвещение; 2018 г.;
- А.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Л.С. Киселева, Э.Г. Позняк «Геометрия», 10-11 класс, Просвещение; 2014 г.;

Программа учебного предмета «Математика» рассчитана с 10 по 11 класс по 6 часов в неделю: 10-ый класс - 210 часов, из них алгебра и начала математического анализа - 140 ч, геометрия - 70 ч., 11-ый класс - 204 часов, из них алгебра и начала математического анализа — 136 ч, геометрия -68 ч. Всего - 414 часов.

Количество контрольных работ по алгебре и началам математического анализа: 10-ый класс -8, 11-ый класс -8.

Количество проверочных работ по алгебре и началам математического анализа: 10-ый класс – 4, 11-ый класс - 5

Количество контрольных работ по геометрии: 10-ый класс -4, 11-ый класс -5.

Количество проверочных работ по геометрии: 10-ый класс – 4, 11-ый класс - 2

Планируемые результаты освоения учебного предмета

Личностные:

у учащихся будут сформированы:

- 1) ответственное отношение к учению;
- 2) готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- 3) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
 - 4) начальные навыки адаптации в динамично изменяющемся мире;
- 5) экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;
- 6) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
- 7) умение контролировать процесс и результат учебной математической деятельности;

у учащихся могут быть сформированы:

- 1) первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 2) коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
- 3) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 4) креативность мышления, инициативы, находчивости, активности при решении арифметических задач.

Метапредметные:

регулятивные

выпускник научится:

- 1) формулировать и удерживать учебную задачу;
- 2) выбирать действия в соответствии с поставленной задачей и условиями её реализации;
- 3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
 - 4) предвидеть уровень усвоения знаний, его временных характеристик;
 - 5) составлять план и последовательность действий;
 - 6) осуществлять контроль по образцу и вносить необходимые коррективы;
- 7) адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- 8) сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона;

выпускник получит возможность научиться:

- 1) определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
 - 2) предвидеть возможности получения конкретного результата при решении задач;
- 3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;
- 4) выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;
- 5) концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;

познавательные

выпускник научится:

- 1) самостоятельно выделять и формулировать познавательную цель;
- 2) использовать общие приёмы решения задач;
- 3) применять правила и пользоваться инструкциями и освоенными закономерностями;
 - 4) осуществлять смысловое чтение;
- 5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;
- 6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
- 8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

выпускник получит возможность научиться:

- 1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- 2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
 - 3) видеть математическую задачу в других дисциплинах, в окружающей жизни;
- 4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- 5) планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
 - 6) выбирать наиболее рациональные и эффективные способы решения задач;
- 7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
 - 8) оценивать информацию (критическая оценка, оценка достоверности);
- 9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;

коммуникативные

выпускник научится:

- 1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
- 2) взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
 - 3) прогнозировать возникновение конфликтов при наличии разных точек зрения;
 - 4) разрешать конфликты на основе учёта интересов и позиций всех участников;

- 5) координировать и принимать различные позиции во взаимодействии;
- 6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Предметные:

выпускник научится:

- 1) работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию;
- 2) владеть базовым понятийным аппаратом: иметь представление о числе, дроби, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность);
- 3) выполнять арифметические преобразования, применять их для решения учебных математических задач;
 - 4) пользоваться изученными математическими формулами;
- 5) самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;
- 6) пользоваться предметным указателем энциклопедий и справочников для нахождения информации;
- 7) знать основные способы представления и анализа статистических данных; уметь решать задачи с помощью перебора возможных вариантов;

выпускник получит возможность научиться:

- 1) выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- 2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;
- 3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Требования к уровню подготовки обучающихся

В личностном направлении:

- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

В метапредметном направлении:

• первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

В предметном направлении:

- овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- умение проводить классификации, логические обоснования, доказательства математических утверждений;
- умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
- развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;
- овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
- овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
- овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
- овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

• умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Содержание учебного предмета 10 класс

Алгебра

Действительные числа (12 часов, из них один час вводная контрольная работа)

Понятие действительного числа. Свойства действительных чисел. Множества чисел и операции над множествами чисел. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

Рациональные уравнения и неравенства (18 часов, из них 1 проверочная и 1 контрольная работа)

Рациональные выражения. Формула бинома Ньютона, свойства биноминальных коэффициентов, треугольник Паскаля.

Рациональные уравнения и неравенства, метод интервалов решения неравенств, системы рациональных неравенств.

Корень степени п (12 часов, из них 1 контрольная работа)

Понятие функции, ее области определения и множества значении, графика функции. Функция $y = x^n$, где $n \in \mathbb{N}$, ее свойства и график. Понятие корня степени n > 1 и его свойства, понятие арифметического корня.

Степень положительного числа (13 часов, из них 1 проверочная работа и 1 контрольная работа)

Понятие степени с рациональным показателем, свойства степени с рациональным показателем. Понятие о пределе последовательности. Существование предела монотонной и ограниченной. Бесконечная геометрическая прогрессия и ее сумма. Число е. Понятие степени с действительным показателем. Свойства степени с действительным показателем. Преобразование выражений, содержащих возведение в степень. Показательная функция, ее свойства и график.

Логарифмы (6 часов)

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени, переход к новому основанию. Десятичный и натуральный логарифмы. Преобразование выражений, содержащих логарифмы.

Логарифмическая функция, ее свойства и график.

Простейшие показательные и логарифмические уравнения и неравенства (11 часов, из них 1 проверочная работа и 1 контрольная работа)

Показательные и логарифмические уравнения и неравенства и методы их решения.

Синус и косинус угла и числа (7 часов)

Радианная мера угла. Синус, косинус, тангенс и котангенс произвольного угла и действительного числа. Основное тригонометрическое тождество для синуса и косинуса. Понятия арксинуса, арккосинуса.

Тангенс и котангенс угла и числа (6 часов, из них 1 контрольная работа)

Тангенс и котангенс угла и числа. Основные тригонометрические тождества для тангенса и котангенса. Понятие арктангенса числа.

Формулы сложения (11 часов, из них 1 проверочная работа работа)

Синус, косинус и тангенс суммы и разности двух аргументов. Формулы приведения. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование простейших тригонометрических выражений.

Тригонометрические функции числового аргумента (9 часов, из них 1 проверочная работа и 1 контрольная работа)

Тригонометрические функции, их свойства и графики, периодичность, основной период.

Тригонометрические уравнения и неравенства (12 часов, из них 1 проверочная работа и 1 контрольная работа)

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие тригонометрические неравенства.

Элементы теории вероятностей (8 часов)

<u>Табличное и графическое представление данных</u>. Числовые характеристики рядов данных.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

Повторение курса алгебры и математического анализа за 10 класс

Геометрия

1. Аксиомы стереометрии и их простейшие следствия (5 часов, из них 1 проверочная работа).

Основные понятия стереометрии. Аксиомы стереометрии и их связь с аксиомами планиметрии.

Основная цель – сформировать представления учащихся об основных понятиях и аксиомах стереометрии.

2. Параллельность прямых и плоскостей (19 часов из них 1 проверочная работа и 2 контрольных работы).

Параллельные прямые в пространстве. Признак параллельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Свойства параллельности плоскостей. Изображение пространственных фигур на плоскости и его свойства.

Основная цель — дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве.

3. Перпендикулярность прямых и плоскостей (20 часов, из них 1 проверочная и 1 контрольная работа).

Перпендикулярные прямые в пространстве. Признак перпендикулярности прямой и плоскости. Свойства перпендикулярности прямой и плоскости. Перпендикуляр и наклонная к плоскости. Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещивающимися прямыми. Применение ортогонального проектирования в техническом черчении.

Основанная цель — дать учащимся систематические сведения о перпендикулярности прямых и плоскостей в пространстве.

4. Многогранники(12 часов, из них 1 проверочная и 1 контрольная работа).

Многогранники. Сечения многогранников. Призма. Прямая и правильная призмы. Параллелепипед. Пирамида. Усеченная пирамида. Правильная пирамида. Правильные многогранники.

Основная цель — дать учащимся систематические сведения об основных видах многогранников.

5.Векторы в пространстве (6 часов).

Действия над векторами в пространстве. Разложение вектора по трем некомпланарным векторам. Уравнение плоскости.

Основная цель — обобщить и систематизировать представления учащихся о векторах и декартовых координатах; ввести понятия углов между скрещивающимися прямыми, прямой и плоскостью, двумя плоскостями.

5. Повторение.

11 класс

«Алгебра и начала анализа» (профильный уровень 4ч в неделю, всего 136 часов).

1. Функции и их графики (20 часов, из них 2 часа контрольных работ и 1 час проверочная работа)

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Понятие о непрерывности функции. Основные теоремы о непрерывных функциях.

Понятие о пределе функции в точке. Поведение функций на бесконечности. Графики дробно-линейных функций.

Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной. Обратные тригонометрические функции, их свойства и графики.

2. Производная и ее применение (27часов, из них 2 часа проверочных работ и 2 часа контрольных работ).

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций. Производные сложной и обратной функций. Вторая производная. Применение производной к исследованию функций и построению графиков. Использование производных при решении уравнений и неравенств, при решении текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

3. Первообразная и интеграл (13 часов, их них 1час контрольная работа).

Площадь криволинейной трапеции. Понятие об определенном интеграле. Первообразная. Первообразные элементарных функций. Правила вычисления первообразных. Формула Ньютона-Лейбница.

Примеры применения интеграла в физике и геометрии.

4.Уравнения и неравенства (51час, из них 2 часа проверочные работы и 3 часа контрольных работ).

Многочлены от двух переменных. Многочлены от нескольких переменных, симметрические

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. . Решение иррациональных неравенств. Решение систем уравнений с двумя неизвестными простейших типов. Решение систем неравенств с одной переменной.

Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

5. Элементы комбинаторики, теории вероятностей, статистики и логики (6 часов).

Статистика. Статистическая информация и формы ее представления. Решение комбинаторных задач.

6. Повторение курса алгебры и математического анализа (17 часов).

Геометрия

Метод координат в пространстве (15 часов, из них 2 часа контрольных работ).

Координаты вектора. Скалярное произведение векторов.

Цилиндр, конус, шар (17 часов, из них 1 час проверочная работа и 1 час контрольная работа).

Тела вращения: цилиндр, конус, шар. Сечения тел вращения. Касательная плоскость к шару. Вписанные и описанные многогранники. Понятие тела и его поверхности в геометрии.

Основная цель- познакомить учащихся с простейшими телами вращения и их свойствами. Повторить и систематизировать сведения, известные учащимся из курсов стереометрии и планиметрии 10 класса.

Объёмы тел (23 часа, из них 1 час проверочная работа и 2 часа контрольных работ).

Понятие об объёме. Объёмы многогранников: прямоугольного и наклонного параллелепипедов, призмы, пирамиды. Равновеликие тела. Объёмы подобных тел. Объём цилиндра, конуса, шара. Объём шарового сегмента и сектора. Понятие площади поверхности. Площади боковых поверхностей цилиндра и конуса, площадь сферы.

Основная цель – продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объёмов, завершить систематическое изучение тел вращения в процессе решения задач на вычисление площадей их поверхностей.

Повторение курса геометрии (13 ч)

Основная цель - повторить основные вопросы планиметрии и стереометрии, подготовить учащихся к итоговой аттестации.